时晓曚, 鄢珅, 王琳淼, 等, xxxx. 基于探空数据的测风激光雷达在黄海西部海岸带的适用性分析[J]. 海洋科学进展, x(x): xx-xx. doi: 10.12362/j.issn.1671-6647.20230625001.
引用本文: 时晓曚, 鄢珅, 王琳淼, 等, xxxx. 基于探空数据的测风激光雷达在黄海西部海岸带的适用性分析[J]. 海洋科学进展, x(x): xx-xx. doi: 10.12362/j.issn.1671-6647.20230625001.
SHI X M, YAN S, WANG L M, et al, xxxx. Doppler wind lidar applicability research in western Yellow Sea coastal zone based on radiosonde[J]. Advances in Marine Science, x(x): xx-xx. DOI: 10.12362/j.issn.1671-6647.20230625001
Citation: SHI X M, YAN S, WANG L M, et al, xxxx. Doppler wind lidar applicability research in western Yellow Sea coastal zone based on radiosonde[J]. Advances in Marine Science, x(x): xx-xx. DOI: 10.12362/j.issn.1671-6647.20230625001

基于探空数据的测风激光雷达在黄海西部海岸带的适用性分析

Doppler Wind Lidar Applicability Research in Western Yellow Sea Coastal Zone Based on Radiosonde

  • 摘要: 利用2021年4月至2022年12月期间位于黄海西部海岸带青岛国家基本气象站观测场内的多普勒测风激光雷达和 L 波段气球探空系统(以下简称L波段探空,Lradar),经过观测数据时间和空间相互匹配,以L 波段探空测风数据为参照标准, 对测风激光雷达探测高度、水平风速和水平风向的探测能力进行对比分析,结果表明:最大探测高度日变化特征与边界层高度日变化较为吻合,每日09:00探测高度最低约1 000 m,17:00则达到探测高度的峰值约1 300 m。在筛选出的共计1 768次二者共同观测时刻中,超过90%测风激光雷达最大观测高度低于2 000 m,不足500 m的时刻约占16%。二者水平风速和水平风向的线性拟合效果较好,相关系数分别高达0.97和0.98,其探测能力在海风和陆风时刻存在微小差异。测风激光雷达水平风速误差随高度和风速大小的变化存在差异,在500 m以下测风激光雷达平均风速明显大于L 波段探空测得的平均风速,在500 m至1 500 m误差较小。在4级风及以下,风速误差分布较为集中;5到7级风,风速误差离散程度最大,离散值最多;8级风以上,离散误差明显减少。二者水平风向变化趋势具有较好的一致性,测风激光雷达风向误差以正值为主,即相较于L 波段探空顺时针偏转。在低层以偏北和偏南风向为主,在西北(NW)、北西北(NNW)、正南(S)和南东南(SSE)方向上其频率小于L波段探空,在正北(N)、北东北(NNE)、南西南(SSW)和西南(SW)方向上大于L波段探空,高层开始转为偏西风向,在正西(W)方向频率明显大于L 波段探空。以上结果表明,测风激光雷达可以较好地刻画出黄海西部海岸带边界层内的风场信息,为后续测风激光雷达在海岸带和海上观测的业务应用提供有效参考。

     

    Abstract: The article utilizes Doppler wind lidar and L-band radiosonde system installed at Qingdao National Basic Meteorological Observing Station in the coastal zone of the western Yellow Sea from April 2021 to December 2022. Through time and space matching of the observed data, the detection capabilities of the Doppler wind lidar for detection height, horizontal wind speed, and horizontal wind direction are compared and analyzed with the data measured by the L-band radiosonde system as the reference standard. The results show that the daily variation characteristics of the maximum detection height are consistent with the daily variation of the boundary layer height. The lowest detection height is about 1000 m at 09:00 (Beijing Time) each day, and the peak detection height of about 1300 m is reached at 17:00. Among the total of 1768 jointly observed moments that were screened, more than 90% of the maximum observation heights of Doppler wind lidar are below 2 000 m, and the moments with heights below 500 m account for 16%. The linear fitting effect of the horizontal wind speed and direction between two instruments is good, with correlation coefficients of 0.97 and 0.98 respectively. There are differences in their detection capabilities during sea breeze and land breeze periods. The errors in horizontal wind speed vary with height and wind speed. Below 500 m, the wind speed observed by the wind lidar is generally higher than that of the L-band sounding system, while between 500 and 1500 m, the two are closer. The wind speed error dispersion is relatively concentrative at and below force 4 wind. For force 5 to 7 wind, the statistical dispersion of wind speed error is the largest and the most discrete value. Above force 8 wind, the dispersion error significantly reduces. There is good consistency in the trend of horizontal wind direction changes between two measurements. The wind direction error of Doppler wind lidar is mainly positive, that is, compared with the clockwise deflection of L-band radiosonde. At the lower level, the wind direction is mainly northerly and southerly. The frequency of Doppler wind lidar is lower than that of L-band radiosonde in NW, NNW, S and SSE directions, and higher in N, NNE, SSW and SW directions. At the upper level, the wind begins to shift to the west and the frequency of Doppler wind lidar is higher than that of L-band radiosonde in W direction, obviously.

     

/

返回文章
返回