基于XGBoost的三维温盐反演模型声速仿真应用

Application of 3D Thermohaline Inversion Model Based on XGBoost for Sound Velocity Simulation

  • 摘要: 基于卫星遥感海面温度和海面高度数据以及Argo数据,利用Extreme Gradient Boosting(XGBoost)算法研究了不同深度三维温盐场的反演模型,实现了30 s内反演2019年1月至12月全球58层温度(盐度)信息,反演的温盐信息与Argo数据的空间和层化分布特征吻合,全球58层温度(盐度)反演平均绝对误差和均方根误差分别为0.319 ℃(0.050)和0.497 ℃(0.077);南海和西太平洋局部海域的温盐剖面也与Argo数据存在较好的一致性。将XGBoost反演模型得到的温盐信息应用于声速仿真,发现其结果可与Argo数据相吻合。本文的XGBoost温盐反演在保证精度的前提下显著提升了反演效率,能够充分反映海洋内部层化结构,并且可应用于声速仿真研究,为海洋环境信息保障提供技术支撑。

     

    Abstract: Based on satellite remote sensing sea surface temperature and sea surface height data and Argo data, this paper uses the Extreme Gradient Boosting (XGBoost) algorithm to study the inversion model of three-dimensional thermohaline at different depths. The inverted temperature and salinity information are consistent with the spatial and stratified distribution characteristics of the Argo data. The mean absolute error and root mean square error of global temperature (salinity) inversions at 58 layers are 0.319 °C (0.050) and 0.497 °C (0.077), respectively. Also, the thermohaline profiles of the South China Sea and the western Pacific Ocean are also in good agreement with the Argo data. Thereafter, the thermohaline information obtained from the XGBoost inversion model was applied to the sound velocity simulation. It can be seen that the XGBoost Inversion of thermohaline in this paper significantly improves the inversion efficiency on the premise of ensuring the accuracy. It can fully reflect the stratified structure of the ocean, and be applied to the simulation of sound velocity to provide technical support for marine environmental information assurance.

     

/

返回文章
返回