南海及邻近海域卫星遥感SST数据重构方法研究

Research on Reconstruction Method of Satellite Remote Sensing SST Data in the South China Sea and Adjacent Waters

  • 摘要: 云雾、气溶胶等导致遥感数据出现大量缺失,对海洋研究造成了严重的影响。重构缺失遥感数据进而得到高空间覆盖率的数据对于支撑大尺度海洋环境监测和气候变化研究具有重要意义。本研究在数据插值卷积自动编码器(Data Interpolating Convolutional Auto Encoder, DINCAE)的结构基础上,通过以卷积层代替全连接层、增加跳跃连接和引入注意力机制模块对DINCAE进行了改进,强化了模型对数据时空特征的提取能力,构建了一种具有注意力机制的数据插值卷积自编码器(Data Interpolation Convolutional Autoencoder with Attention Mechanism, A-DINCAE)模型。基于低空间覆盖率的卫星红外遥感海表温度(Sea Surface Temperature, SST)数据,利用该模型重构了2015—2020年间南海及邻近海域空间全覆盖的SST数据。与经验正交函数插值(Data Interpolating Empirical Orthogonal Functions, DINEOF)方法和DINCAE模型进行了对比,结果发现,2015—2020年A-DINCAE重构SST数据逐年的均方根误差相较于DINEOF方法分别提升了0.10、0.19、0.17、0.16、0.06和0.17 ℃,相较于DINCAE模型分别提升了0.02、0.09、0.07、0.06、0.04和0.05 ℃,A-DINCAE模型重构的SST数据结果具有更高的精度,对小尺度信息和梯度趋势恢复更为准确。

     

    Abstract: The large amount of missing remote sensing data caused by clouds and aerosols has a serious impact on marine research. Reconstructing the missing remote sensing data to obtain high spatial coverage data is crucial to support large-scale ocean environmental monitoring and climate change studies. Based on the structure of Data Interpolating Convolutional Auto Encoder (DINCAE), improvements have been made by replacing fully connected layers with convolutional layers, adding skip connections, and introducing an attention mechanism module. These improvements strengthened the model’s ability to extract spatiotemporal features from the data, resulting in the development of a Data Interpolation Convolutional Autoencoder with Attention Mechanism (A-DINCAE) model. The A-DINCAE model was used to reconstruct spatially complete SST data in the South China Sea and adjacent waters from 2015-2020, based on satellite infrared SST data with low spatial coverage. Compared to the Data Interpolating Empirical Orthogonal Functions (DINEOF) method and the DINCAE model, the results indicate that from 2015 to 2020, the A-DINCAE model achieves a root mean square error (RMSE) improvement of 0.10, 0.19, 0.17, 0.16, 0.06 and 0.17 °C for SST data relative to the DINEOF method, and improvements of 0.02, 0.09, 0.07, 0.06, 0.04 and 0.05 °C compared to the DINCAE model, respectively. The SST data reconstructed by the A-DINCAE model showed higher accuracy, especially in recovering small-scale information and gradient trends.

     

/

返回文章
返回