多源SAR海洋锋监测能力评估与分析

Multi-Source SAR Ocean Front Monitoring Capability Assessment and Analysis

  • 摘要: 海洋锋面监测是渔业捕捞、水下航行和水下环境信息感知重要的一环。为定量、客观及准确地评估不同卫星合成孔径雷达(Synthetic Aperture Radar, SAR)数据在海洋锋监测精度与边界识别能力方面的性能,本研究基于现有国际主流SAR卫星(GF-3、Radarsat-2和Sentinel-1)数据,利用Canny边缘检测算法检测墨西哥湾暖流关键区域和受黑潮影响的南海关键区域海洋锋,结合海表面温度(SST)再分析数据验证检测结果,从卫星对海洋锋的监测能力出发构建评价指标体系,并采用灰色关联分析(Grey Relation Analysis, GRA)法、数据包络分析(Data Envelopment Analysis, DEA)法和模糊综合评价(Fuzzy Comprehensive Evaluation, FCE)法三种决策分析方法综合评估3种SAR卫星的海洋锋监测能力。结果表明,Radarsat-2在墨西哥湾暖流关键区域和黑潮影响下的南海关键区域两处研究区域中多尺度海洋锋边界识别能力与内部相关性最强,灰色关联度最高达到0.75,综合效益最高达到0.70,且对长海洋锋具备较强的监测能力;GF-3则更适用于黑潮影响下的南海关键区域海洋锋的监测,灰色关联度为0.67,综合效益为0.68;Sentinel-1在中等分辨率下的宽幅覆盖与快速重访能力则适用于监测中尺度稳态锋区。本研究可为SAR海洋锋面监测效能评估、最优监测手段选择及多源信息融合提供科学的技术支撑与决策依据。

     

    Abstract: Ocean front monitoring plays a critical role in fisheries, underwater navigation, and marine environmental sensing. To quantitatively, objectively, and accurately evaluate the performance of different Synthetic Aperture Radar (SAR) satellites in ocean front detection accuracy and boundary identification capabilities, this study utilizes data from mainstream international SAR satellites (GF-3, Radarsat-2, and Sentinel-1). The Canny edge detection algorithm is applied to identify ocean fronts in the Gulf Stream key area and the South China Sea key region influenced by the Kuroshio Current. Sea Surface Temperature (SST) reanalysis data are used to validate the detection results. An evaluation index system is established based on the satellites' ocean front monitoring capabilities, and three comprehensive decision-making methods, Grey Relation Analysis (GRA), Data Envelopment Analysis (DEA), and Fuzzy Comprehensive Evaluation (FCE), are employed to assess the monitoring performance of the three SAR satellites. The results indicate that Radarsat-2 exhibits the strongest multi-scale ocean front boundary identification capability and internal correlation in both study areas, with the highest grey relation degree reaching 0.75 and the highest comprehensive efficiency reaching 0.70. It also demonstrates strong monitoring capability for long ocean fronts. GF-3 is more suitable for monitoring ocean fronts in the South China Sea key region influenced by the Kuroshio Current, with a grey relation degree of 0.67 and comprehensive efficiency of 0.68. Sentinel-1, with its medium-resolution wide coverage and rapid revisit capability, is suitable for monitoring mesoscale steady-state frontal zones. This study provides scientific technical support and decision-making references for evaluating the effectiveness of SAR-based ocean front monitoring, selecting optimal monitoring approaches, and integrating multi-source information.

     

/

返回文章
返回