基于多信息增强模块改进的Transformer微藻细胞目标检测模型

Transformer-Based Microalgae Cell Object Detection Model Enhanced by Multi-Information Enrichment Modules

  • 摘要: 藻类细胞检测对生态系统的监测具有重要意义,然而目前藻类细胞检测仍依赖于人工,不仅耗时费力,还消耗大量成本。本文将计算机辅助检测与Transformer目标检测模型结合,并用于微藻细胞检测任务,针对微藻细胞特征模糊的问题,设计一种融合感受野注意力(Receptive Field Attention, RFA)与通道注意力(Coordinate Attention, CA)特征强化卷积模块,并选择ResNet50、ResNet34和ResNet18三种不同的主干进行实验。实验结果表明,Kaggle公开微藻图像数据集中的扁藻、小球藻、盐藻、黄藻、紫球藻和红球藻六种微藻利用改进后的模型所获得的最高检测精确度分别为87.6%、73.3%、85.7%、95.2%、97.7%和99.0%,由此证明Transformer模型在微藻目标检测领域具有可行性和科学性,可为人工智能在生态学研究和微藻检测领域提供了新的思路和方法。

     

    Abstract: Algae cell detection is of great significance for ecosystem monitoring, and currently algal cell detection still relies on manual labor, which is not only time-consuming and laborious, but also consumes a large amount of cost. In this study, computer-aided detection is combined with the Transformer target detection model and used for the microalgae cell detection task. To address the problem of blurred microalgae cell features, we design a feature-enhanced convolution module incorporating RFA and CA, and select three different backbones, namely, ResNet50, ResNet34, and ResNet18, for the experiments. The experimental results show that the improved model obtains the highest accuracy of 87.6%, 73.3%, 85.7%, 95.2%, 97.7% and 99.0% for six microalgae, namely, Platymonas, Chlorella, Dunaliella, Effrenium, Porphyridium, and Haematococcus in Kaggle’s publicly available microalgae image dataset, respectively, which proves the feasibility of the Transformer model in the field of microalgae target detection and the scientificity, providing new ideas and methods for artificial intelligence in the field of ecological research and microalgae detection.

     

/

返回文章
返回