渤黄海海域深度基准构建及适应性分析

Development and Applicability Assessment of Depth Datum for the Bohai-Yellow Sea Area

  • 摘要: 为构建适应于渤黄海海域的高精度深度基准面模型,综合利用卫星测高数据与多种全球潮汐模型开展组合建模与精度评估分析。基于23个验潮站的长期实测数据,系统评估了DTU16、EOT20、FES2014和FES2022四种全球潮汐模型在研究区域的适用性。结果表明,FES2014模型对8个主要短周期分潮的模拟精度最优,其综合预报中误差为4.57 cm。针对现有潮汐模型在年周期(Sa)与半年周期(Ssa)等长周期分潮精度不足的问题,利用1993—2021年间TOPEX/Poseidon及Jason系列卫星测高数据(未实施逆气压改正)反演沿轨Sa和Ssa分潮调和常数。与验潮站数据对比表明,Sa和Ssa振幅的中误差分别为3.02和2.89 cm,反演可靠。在此基础上构建了长周期分潮经验模型,并与FES2014模型提供的11个短周期分潮共同组合,最终建立了覆盖渤黄海区域的深度基准面模型。结果显示,深度基准值的空间分布范围为51~530 cm,呈现出显著的区域差异性。与单独采用FES2014模型构建的基准面相比,本研究模型的精度显著提升,验潮站处中误差由19.44 cm降低至11.66 cm,精度提升幅度达40%。该提升主要源于长周期分潮反演策略的改进,以及未实施逆气压改正的卫星测高数据与验潮站观测之间高度一致性的支撑。与验潮站现行深度基准值比较仍可发现一定偏差,说明历史基准值在分潮选择和计算方法上的差异会引起时空非一致性。建议在特殊区域引入局地同化与优化策略,以增强模型对既有基准体系的兼容性。本研究提出的组合长周期经验模型的深度基准面建模方法,为渤黄海高精度深度基准构建提供了系统化技术路径,验证了多源数据融合策略在提升模型精度及区域适应性方面的有效性,可为海道测量、陆海基准统一与海洋工程应用提供理论支撑与技术参考。

     

    Abstract: To establish a high-precision and regionally adaptive depth datum for the Bohai and Yellow Seas, this study integrates satellite altimetry data with multiple global tidal models to develop a hybrid modeling and accuracy evaluation framework. Based on long-term observations from 23 tide gauge stations, the applicability of four global tidal models—DTU16, EOT20, FES2014, and FES2022—was systematically assessed. Results indicate that the FES2014 model exhibited the best performance among short-period tidal models, with the lowest RSS value of 4.57 cm for the eight major tidal constituents. To address the limited accuracy of existing tidal models in representing long-period constituents such as the annual (Sa) and semi-annual (Ssa) tides, along-track harmonic constants of Sa and Ssa were extracted from TOPEX/Poseidon and Jason satellite altimetry data (1993-2021) without inverse barometric correction. Validation against tide gauge records shows that the root mean square errors of Sa and Ssa amplitudes are 3.02 cm and 2.89 cm, respectively, demonstrating the reliability of this method for long-period tidal modeling. By combining 11 short-period constituents from FES2014 with long-period constituents derived from satellite altimetry, a comprehensive hybrid tidal model was constructed to generate a depth datum surface covering the Bohai and Yellow Sea region. The resulting datum values range from 51.49 cm to 530.04 cm, exhibiting significant spatial variation. Compared with the model based solely on FES2014, the hybrid model shows a notable improvement in accuracy, reducing the root mean square error from 19.44 cm to 11.66 cm at tide gauge locations—a 40% improvement. This enhancement is primarily attributed to the improved treatment of long-period constituents and the strong consistency between uncorrected satellite altimetry and in situ observations. Comparison with existing depth datum values at tide gauge stations reveals persistent regional deviations, reflecting spatiotemporal inconsistencies arising from differences in constituent selection and computational methods used in historical practices. These findings highlight the need to implement localized data assimilation strategies in key areas to enhance compatibility with existing datums. The proposed hybrid tidal modeling approach offers a systematic solution for high-precision depth datum construction in the Bohai and Yellow Seas. It confirms the effectiveness of multi-source data integration in improving model accuracy and regional adaptability and provides a theoretical and technical basis for hydrographic surveying, vertical datum unification, and marine engineering applications.

     

/

返回文章
返回