基于TimeMixer的班达海SST预测

A Prediction Model for SST in the Banda Sea Based on TimeMixer

  • 摘要: 海表温度(Sea Surface Temperature, SST)是表征海-气相互作用的重要物理变量,其准确预测对气候预报与灾害预警具有重要意义。本文构建了一种基于TimeMixer的多物理要素融合预测模型,实现了班达海区域SST的天气尺度智能预报。模型首先对30 d的历史多物理量时间序列进行降采样处理,获取不同时间尺度的SST序列;随后,利用历史数据分解混合模块对各尺度SST序列分解为趋势项与季节项,分别采用自顶向下与自底向上的方式进行时间特征提取,并引入Swin Transformer模块提取SST序列的空间和通道特征。最后,模型融合多尺度SST序列预测结果并得到未来7 d的SST预测序列。在班达海区域进行实验验证,结果表明,本文所构建模型的预测均方根误差(RMSE)为0.22 °C,优于多种基线模型,验证了本文模型的有效性和稳定性。

     

    Abstract: Sea Surface Temperature (SST) is a key physical variable reflecting ocean-atmosphere interactions, and its accurate prediction is crucial for climate forecasting and disaster early warning. This paper proposes a TimeMixer-based multi-physical-factor fusion prediction model for intelligent SST forecasting at the weather scale in the Banda Sea region. The model first downsamples 30-day historical multivariate time series to capture SST sequences at different temporal scales. Then, a historical data decomposition and fusion module is employed to separate the multi-scale SST sequences into trend and seasonal components, which are modeled using top-down and bottom-up strategies, respectively. Meanwhile, Swin Transformer block is introduced to extract spatial and channel features of the SST sequences. Finally, the model fuses the predictions across multiple temporal scales to generate 7-day SST forecasts. Experimental results in the Banda Sea region show that the proposed model achieves a root mean square error (RMSE) of 0.22 °C, outperforming various baseline models and demonstrating its effectiveness and stability.

     

/

返回文章
返回